

Please provide feedback using the QR Code

H.A.P.P.I Hat: Speedy E.E.G

Human Augmented Perception Processing Interface

DU Team: Alana Ginter, Emily Lin, Michael Logan, Dylan Wright, Will Brandine Sponsors: Dr. Yoon, Dr. Hong, Phillip Chiem, Youngsoo Kim, Nicholas Molinski

Motivation

Problem: The current EEG devices are often uncomfortable for prolonged use, and are limited to clinical use environments and complex setups

Our Goal: The team aimed to design a comfortable, user-based EEG system that allows for data collection and is adjustable for any user.

Solution: The team built an EEG (Electroencephalogram) a device capable of being worn for 6 hours at a time and storing 24 hours of continuous usable data. The system is adjustable and usable to all head and hair types

Diagrams

Data Flow:

The chart depicts the data flow process for the system

2D Assembly of the Mechanical System:

2. Neuroelectrics, EEG Signal Processing for Dummies. Neuroelectrics (2024), (available at

https://www.neuroelectrics.com/blog/eeg-signal-processing-for-dummies)

Design Process

Design Highlights:

The system is adjustable for any head and hair type, with data streaming, that can be collected for a full day

Testing:

- Sampling: brainwaves are captured on the Cyton board with a Daisy module at 250Hz and 24-bit resolution
- EEG data stored on SD card at about 500 MB/day
- · Battery systems comply with regulatory policies and are designed for balance and comfort on the headband system
- Sensor mounts are adjustable and can move along the track system, which aligns with 10-20 standard

Mechanical System:

- Electrode along the 10-20 electrode placement systems, with adjustable mounts corresponding to headband
- Bungee system between tracks for overall head size adjustment

Performance

Positive:

- Battery operates over 20 hours
- Sampling rate meets design requirements of 250Hz with 8 channels
- Track system supports the electrode placement per the 10-20 standard
- Suitable for all head and hair types
- Our dry-based electrode system takes 5 minutes to set up, whereas the wet one takes 2 hours

Negative:

- The data collected is not consistent
- The impedance level is high for each channel

Recommendations for Future Work

- Explore the wireless data streaming and incorporate a mobile app for a better user interface
- Incorporate AI for better data analysis & preprocessing
- Improve wire management for components
- Decrease the system's weight with lighter electrical components

Impacts of the project

- Capturing high-quality signals at home saves time and resources to diagnose and monitor conditions
- The system will expand the use of EEG systems in remote areas
- Longer collection of data and increased EEG data itself will lead advances in understanding the brain

Acknowledgements

We want to give thanks to our sponsor dagscribe, and both Dr. Yoon and Dr. Hong for their assistance in this project. As well as a special thank you to Dr. Martins, Dr.Auger, Justin Huff, and Sky Gao for al their continued support.

Data Preprocessing

Data Analytics

Power Spectrum Analysis

- Goal: Analyze brainwave power (Delta, Theta, Alpha, Beta, etc.)
- How? Compute Power Spectral Density (PSD) – a measure of how strong different brainwave frequencies are, per channel.
- · Create:
- Absolute power (total strength of the band)
- Z-scored power (standardized)
- Relative power (proportion of total power)
- Plot scalp maps to visualize how power is distributed across the head — for both absolute and relative power.

Connectivity Analysis

- Goal: Find how brain areas are functionally connected
- · How?
- Compute coherence: how similar signals are between channels.
- Compute PLI (Phase Lag Index): how consistently one signal leads/lags another in phase.
- Plot brain connectivity networks

